
Intro To Vision
Targeting

TEAM 4150

Overview
There are many different ways to use vision on your robot, including

• Targeting
• Monitoring Your Robot's Subsystems
• Viewing the Field from the robot's perspective

 . We're going to be focusing on vision targeting in this tutorial. If you are looking to try
and make a driver or monitor camera, FIRST FRC Documentation covers this topic in detail
(link). This tutorial is to help teams unfamiliar with vision targeting to get started.

The main way a vision program works is by shining a bright light at a target, filtering out
the bright spots made by the reflective tape, and working off the contour of that shape to
harvest data. This tutorial is focused on setting things up, collecting useful resources, and
giving tips for the data processing step.

 Please bear in mind this is a complicated topic. Our team used C++ and the
specific procedure can vary a lot depending on programming language, camera, etc.
and it requires a lot of incremental testing to get right. Since it's impossible to cover every
language and configuration a good bit of nuance is left out of this tutorial, but if you have a
problem don't give up. you are likely to encounter roadblocks while getting started with this,
reach out for help, look at the docs or just keep at it in some way, don't become
discouraged.

2

https://docs.wpilib.org/en/stable/docs/software/vision-processing/introduction/index.html

Step 1: The Raspberry Pi
Before we get started we

have to buy and set up our
Raspberry Pi. The Raspberry Pi is
a little computer that will be
running our vision program. There
are a couple different models
you can get, anything above a
model 3 (3, 3a+, 3b, 4, etc.) is
generally recommended and
can be picked up from Amazon
or the Raspberry Pi Foundation's
website (link).

3

Raspberry Pi, (Credit Wikimedia Foundation)

For setting up your Pi the FRC Docs has a wealth of
information on the subject including wiring configurations and
such which is frankly beyond the scope of this tutorial. We
recommend you go through their tutorial on this topic (link).

https://www.raspberrypi.org/products/
https://docs.wpilib.org/en/stable/docs/software/vision-processing/raspberry-pi/what-you-need-to-get-the-pi-image-running.html

Step 2 - Software Setup

4

 Now that you have your Raspberry
Pi primed and ready, we can turn to
the software you'll need for your vision
workflow.
● GRIP (github) (releases)
● Compiler:

○ Raspberry Pi Toolchain (For
compiling C++ Code) (github)
(releases)

○ More information for Python
and Java is mentioned in the
docs, though it may require
some testing (link)

● Any text editor of your choosing
● Web Browser

Github Logo (Courtesy of Github)

https://github.com/WPIRoboticsProjects/GRIP
https://github.com/WPIRoboticsProjects/GRIP/releases
https://github.com/wpilibsuite/raspbian-toolchain
https://github.com/wpilibsuite/raspbian-toolchain/releases
https://docs.wpilib.org/en/stable/docs/software/vision-processing/raspberry-pi/index.html

Step 3 Vision Workflow - GRIP
The vision program is split up into
three parts the first being:

The GRIP Code
This is where the magic happens with

vision processing. This takes the raw
video from the camera and applies filters
to it to get our "blobs" that contain data
about what we think are vision targets.
This is done in the GRIP program and then
exported into a language of your
choosing (Java, Python, C++). The FRC
Docs covers this in depth, we suggest you
read this before progressing in this tutorial
since some of the concept taught in the
grip tutorial will be mentioned and you
may get lost (link).

5

GRIP Interface (Courtesy of WPILib Docs)

https://docs.wpilib.org/en/stable/docs/software/vision-processing/grip/introduction-to-grip.html

Step 3 Vision Workflow - Data
The second part is:

Data Handling
Here we take the data from the blobs

in from the GRIP code and we calculate
the distance from the target, angle to the
target, and any other information we
need. Although the exact algorithm used
will depend on what data you collected
we'll go over generally how you want to
be processing the data. This step is done
in either Python, Java, or C++ and is built
off a template that can be downloaded
off of the Raspberry Pi vision server under
"Application."

NOTE: You can write this in a language
other than the one used for the RoboRIO
e.g. if you write your robot code in labview
you can write your vision code in
something else 6

Screenshot of A bit of the Data Handling
Program (Note part of this is the
autogenerated Grip program so don't worry if
it looks complicated).

Step 3: Vision Workflow - Controller
The last part of the Vision Workflow is

The Robot Controller
This is when we take the data we've collected and act on it. This

can be used for getting your bearings during autonomous, making auto
aiming systems for shooters and placement subsystems and much more.
This is part of your standard RoboRIO program so if you're using LabVIEW
or some other language you'd still use that here.

To transfer the data from your Raspberry Pi to your RoboRIO you use
the network table. A network table is a giant grid where you have a
"key" which is the name of a piece of data, for instance "angle", and a
"value", which in this case could be 90°. In our program all of the values
you need to control the robot should be posted to the network table.
Specifics on how to use the network table in C++ and Java can be
found in the WpiLib docs under "WPILib Java/C++ API Docs" (link).
Information for Python (link).

7

https://docs.wpilib.org/en/stable/
https://robotpy.readthedocs.io/projects/pynetworktables/en/stable/

Step 4: Scoring
 We're now going to dig in a bit deeper into the data handling part of the
vision workflow, starting with scoring.

 Our list of potential targets from GRIP will include a lot of "noise,"
reflections, objects in the background, etc. that the program filters out as a
target. In order to whittle down this list we can employ a scoring algorithm.
 How it works is it scores a blob based on how much it seems like a target
based on its attributes and then filters out blobs with low scores. Some
possible scored data points include:

- Width/Height Ratio (measure the target's width/height as a benchmark)
- Size (Things that are too small probably aren't the target)
- Skew angle (Most targets won't be tilted)

By adding together the subscores you can normally filter out everything
but the target. You will need to fiddle around with the scoring formula for
each subscore (for instance you can change the degrees/coeffients to
make them drop off more or less along with other things)

8

Most of the data you need such as:
- Angle offset from the target
- Angle offset vertically from the target
- The Screw of the target

 Can all be directly gathered from the grip data once you know
which blob is actually the target via scoring. You may need some
opencv calls, which is a vision processing library that powers GRIP, to
get certain data points (link), but this is advanced and normally GRIP
will suffice. Once collected these data points just need to be
published to the network table for use by the RoboRIO code. The
main other variable that you can't get via this method is distance,
and it requires a good amount of geometry as explained on the next
slide.

Step 5: Calculations

9

https://docs.opencv.org/4.3.0/

Step 5: Calculations - Distance
To find the distance of the target distance, we first need some comparison

between feet and pixels. One strategy is to make use of similar triangles. If we take a
reference object, say a yard stick, and we move it away from the camera until it
completely takes up the width of the camera's vision, the ratio of the distance to that

10

Diagram

stick and the width of that stick equals
the ratio between the distance to any
line parallel to the camera's vision and
the distance to that line, we call this
ratio R.
 Now if we take the width of our
screen and divide that by the width of
our vision target in pixel, we get how
many times wider the full screen
(shown as full camera resolution (FRC)
in the diagram) is than the target.
Since we know the width of the target
in feet if we multiply that by how many
times larger the FRC is than the target,
we get the width in feet of the FRC.
Since the FRC is parallel to the camera
like the reference width, the ratio R,
between the width and distance is the
same. Therefore to solve for distance
we multiply that FRC width by R.

Long Story Short here's the equation:

Step 6: Tweaking
 A large part of vision programming is incremental, you'll find an
issue and tweak your program until it works, as mentioned early don't
give up. There are great resources out there on forums and discord
full of people willing to help. To finish things up here are a couple
tweaks that we found useful while working on vision in general:

- Use green colored LEDs so that the reflective tape on targets
glow green, it will make it much easier for your vision program to
filter it out that way by sorting via color

- If you don't have a green led, make an led mount and put a
green gel over it to color the light

- For the GRIP function that filters out color, add dashboard sliders
to be able to remotely change the HSV range filtered out since
competition in workshop vs play field can be drastically different

11

Credits
• This lesson was written by FRC 4150 in partnership with FRC 8027 for FRCTutorials.com

• You can contact the author at froboticsteam4150@gmail.com.

• More lessons for FIRST Robotics Competition are available at www.FRCtutorials.com

This work is licensed under a
 Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

12

mailto:froboticsteam4150@gmail.com
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

